Determinants of Adjacency Matrices of Graphs
نویسنده
چکیده
Let G be a simple graph with finite number of vertices. We denote by det(G) the determinant of an adjacency matrix of G. This number det(G) is an integer and is an invariant of G so that its value is independent of the choice of vertices in an adjacency matrix. In this paper, we study the distributions of det(G) whenever G runs over graphs with finite n vertices for a given integer n ≥ 1. We denote by Gn the set of all non-isomorphic graphs with n vertices and DGn = {
منابع مشابه
ON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS
A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...
متن کاملReconstruction and higher-dimensional geometry
Tutte proved that, if two graphs, both with more than two vertices, have the same collection of vertex-deleted subgraphs, then the determinants of the two corresponding adjacency matrices are the same. In this paper, we give a geometric proof of Tutte’s theorem using vectors and angles. We further study the lowest eigenspaces of these adjacency matrices.
متن کاملPivots, determinants, and perfect matchings of graphs
We give a characterization of the effect of sequences of pivot operations on a graph by relating it to determinants of adjacency matrices. This allows us to deduce that two sequences of pivot operations are equivalent iff they contain the same set S of vertices (modulo two). Moreover, given a set of vertices S, we characterize whether or not such a sequence using precisely the vertices of S exi...
متن کاملIsomorphic and Nonisomorphic, Isospectral Circulant Graphs
New criteria for which Cayley graphs of cyclic groups of any order can be completely determined–up to isomorphism–by the eigenvalues of their adjacency matrices is presented. Secondly, a new construction for pairs of nonisomorphic Cayley graphs of cyclic groups with the same list of eigenvalues of their adjacency matrices will be presented.
متن کاملSpectral Distributions of Adjacency and Laplacian Matrices of Random Graphs By
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009